

SAMPLE PAPER FOR FIRST TERM EXAMINATION 2023-24

CLASS 12

MARKS:80

General Instructions:

1. This Question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.

2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.

3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.

4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.

5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.

6. Section E has 3 source based/case based/passage based/integrated units of assessment of 4 marks each with sub-parts

SECTION A 1 . If $A = [a_{ij}]$ is a square matrix of order 2 such that $a_{ij} = \begin{cases} 1, \text{ when } i \neq j \\ 0, \text{ when } i = j \end{cases}$, then A^2 is (a) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, (b) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, (c) $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $(d) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 2 . If A and B are invertible square matrices of the same order, then which of the following is not correct? (b) $\left| \left(AB \right)^{-1} \right| = \frac{1}{|A| |B|}$ (a) **AB**^{-t} (d) $(A+B)^{-1} = B^{-1} + A^{-1}$ (c) $(AB)^{-1} = B^{-1}A^{-1}$ 3 . If the area of the triangle with vertices (-3, 0), (3, 0) and (0, k) is 9 squaits, then the value/s of k will be (a) 9 (c) -9 (b) ±3 (d) 6

4	If $f(x) = \begin{cases} \frac{kx}{ x }, \\ 3, \end{cases}$	if $x < 0$ is continuou if $x \ge 0$	s at $x = 0$, then the value	ue of k is
	(a) -3	(b) 0	(c) 3	(d) any real number
5	(0,3),(1,1) and (y, where p , $q > 0$. The	system of linear constraints are condition on p and q so that the
	(a) $p = 2q$	(b) $p = \frac{q}{2}$	(c) $p = 3q$	(d) $p = q$
6	111 0000	-	$\begin{bmatrix} \sqrt{x} \\ 2\sqrt{x} \\ 0 \end{bmatrix}$, where $x \in \mathbb{R}^+$, is	
7	(a) $(2x+1)^2$	(b) 0	(c) $(2x+1)^3$	(d) $(2x-1)^{2}$
	below. (8.2) (8.2) (8.2) (8.2) (8.2) Which of the follow	cum (2.0) to a constraint	to the given Linear Progra	
	(a) $x + y \ge 2$	(b) $x + 2y \le 10$	(c) $x - y \ge 1$	(d) $x - y \le 1$
8.	. Given that A is	a square matrix of order	3 and $ A = -2$, then $ adj $	(2A) is equal to
	(a) -2 [*]	(b) +4	(c) -2 ⁸	(d) 2 *
9.	A problem in Ma respectively. If th problem will be s	ne events of their solving solved, is	ee students whose chance the problem are independ	s of solving it are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ dent then the probability that the
	(a) $\frac{1}{4}$	(b) $\frac{1}{3}$	(c) $\frac{1}{2}$	(d) $\frac{3}{4}$
10	The set of all poi	nts where the function f	(x) = x + x is differentia	able, is
•	(a) (0,∞)	(b) (-∞,0)	$(c) (-\infty, 0) \cup (0, \infty)$	(d) (-∞,∞)
11	If $y = 5\cos x - 3s$		_	_
•			$(c) \frac{dy}{dx} + y = 0 \qquad ($	
12	The points w (a) {0,1,2}		$f(x) = [x], 0 \le x < 3$ (c) {1,2,3,4}	3 is not differentiable (d) None

13	A family has two children. What is the probability that both the children are
	boys given that the elder one is a boy?
	(a) $\frac{1}{4}$ (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) $\frac{1}{1}$ f(x) = $ x - 1 $ is continuous but not differentiable at x =
14	
15	(a) 0 (b) 1 (c) -1 (d) none
15	Find the principle value of $\cos^{-1}\left(-\frac{1}{2}\right)$
	(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c)
16	If $y = \sin^{-1} x + \sin^{-1} \sqrt{1 - x^2}$; $0 \langle x \langle 1, \text{ then } \frac{dy}{dx} \text{ is}$
	(a) 0 (b) $\frac{1}{2}$ (c) 1 (d) -1.
17	If $\sin(\sin^{-1}\left(\frac{1}{5}\right) + \cos^{-1}x) = 1$, then x =
18	If $P(A)=0.4$, $P(B)=p$, $P(A \cup B)=0.6$. Find p if A and B are independent events.
	(a) 2/3 (b) 1 (c) 1/3 (d) none
	ASSERTION-REASON BASED QUESTIONS
	In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R).
	Choose the correct answer out of the following choices.
	(a) Both (A) and (R) are true and (R) is the correct explanation of (A).
	(b) Both (A) and (R) are true but (R) is not the correct explanation of (A).
	 (c) (A) is true but (R) is false. (d) (A) is false but (R) is true.
19	Let $f(x)$ be a polynomial function of degree 6 such that $\frac{d}{dx}(f(x)) = (x-1)^3(x-3)^2$, then
	A DATA AND CARLEND AND A DATA AND A
	ASSERTION (A): $f(x)$ has a minimum at $x = 1$.
	REASON (R): When $\frac{d}{dx}(f(x)) < 0$, $\forall x \in (a-h,a)$ and $\frac{d}{dx}(f(x)) > 0$, $\forall x \in (a,a+h)$; where
	'h' is an infinitesimally small positive quantity, then $f(x)$ has a minimum at $x = a$,
	provided $f(x)$ is continuous at $x = a$.
20	ASSERTION (A): The relation $f: \{1,2,3,4\} \rightarrow \{x,y,z,p\}$ defined by $f = \{(1,x), (2,y), (3,z)\}$ is a bijective function.
	REASON (R) : The function $f: \{1,2,3\} \rightarrow \{x,y,z,p\}$ such that $f = \{(1,x),(2,y),(3,z)\}$ is one-one.
	SECTION B
21	Find the value of $\sin^{-1}\left(\cos\left(\frac{33\pi}{5}\right)\right)$.
22	Find the domain of $\sin^{-1}(x^2-4)$.
23	Find the interval/s in which the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = xe^x$, is increasing.
24	If $f(x) = \frac{1}{4x^2 + 2x + 1}$; $x \in \mathbb{R}$, then find the maximum value of $f(x)$.
25	Check whether the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3 + x$, has any critical point/s or not?
•	If yes, then find the point/s.

	SECTION C	
26	Solve the following Linear Programming Problem graphically:	
·	Minimize: z = x + 2y,	
	subject to the constraints: $x + 2y \ge 100$, $2x - y \le 0$, $2x + y \le 200$, $x, y \ge 0$.	
	OR	
	Solve the following Linear Programming Problem graphically:	
	Maximize: $z = -x + 2y$,	
	subject to the constraints: $x \ge 3, x + y \ge 5, x + 2y \ge 6, y \ge 0$.	
27	Find the maximum profit that a company can make, if the profit function is given by	
	$P(x) = 72 + 42x - x^2$, where x is the number of units and P is the profit in rupees.	
28	$x = a(cost+tsint)$, $y = a(sint - tcost)$. Find $\frac{d^2y}{dx^2}$.	
29	$y = (sinx)^x + sin(x^x)$. Find $\frac{dy}{dx}$.	
30	$y = \sin^{-1}(\frac{2^{x+1}}{1+4^x})$. Find $\frac{dy}{dx}$.	
31	Show that the relation R in the set A = { $x \in Z : 0 \le x \le 12$ } given by R = {(a,b): $ a - b $ is a multiple of 4} is an equivalence relation.	
	SECTION D	
32	. Let \mathbb{N} be the set of all natural numbers and R be a relation on $\mathbb{N} \times \mathbb{N}$ defined by	
•	$(a,b)R(c,d) \Leftrightarrow ad = bc$ for all $(a,b), (c,d) \in \mathbb{N} \times \mathbb{N}$. Show that R is an equivalence relation on	
	$\mathbb{N} \times \mathbb{N}$. Also, find the equivalence class of $(2,6)$, i.e., $[(2,6)]$.	
33	Show that the function $f : \mathbb{R} \to \{x \in \mathbb{R} : -1 < x < 1\}$ defined by $f(x) = \frac{x}{1+ x }, x \in \mathbb{R}$ is one-one and onto function.	
34	Using the matrix method, solve the following system of linear equations :	
	$\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \ \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \ \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2.$	
35	Prove that the volume of the largest cone that can be inscribed in a sphere of radius	
•	R is $\frac{8}{27}$ of the volume of the sphere.	
	SECTION E	
	[This section comprises of 3 case- study/passage based questions of 4 marks each with sub parts.	
	The first two case study questions have three sub parts (i), (ii), (iii) of marks 1,1,2 respectively. The third case study question has two sub parts of 2 marks each)	
	The third case study question has two sub parts of 2 marks each.)	

36	Read the following passage and answer the questions given below:							
	In an Office three employees Jayant, Sonia and Oliver process incoming copies of a certain form. Jayant							
	processes 50% of the forms, Sonia processes 20% and Oliver the remaining 30% of the forms. Jayant							
	has an error rate of 0.06, Sonia has an error rate of 0.04 and Oliver has an error rate of 0.03.							
	Based on the above information, answer the following questions.							
	 Find the probability that Sonia processed the form and committed an error. 							
	(ii) Find the total probability of committing an error in processing the form.							
	(iii) The manager of the Company wants to do a quality check. During inspection, he selects a form at							
	random from the days output of processed form. If the form selected at random has an error, find the							
	probability that the form is not processed by Jayant.							
	OR							
	(iii) Let E be the event of committing an error in processing the form and let E_1, E_2 and E_3 is events that Jayant, Sonia and Oliver processed the form. Find the value of $\sum_{i=1}^{3} P(E_i E)$.							
37	. Read the following passage and answer the questions given below:							
	The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight							
	is governed by the following equation $y = 4x - \frac{1}{2}x^2$, where 'x' is the number of days exposed to the							
	sunlight, for $x \leq 3$.							
	(i) Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.							
	(ii) Does the rate of growth of the plant increase or decrease in the first three days?							
	What will be the height of the plant after 2 days?							

in the month of September and October are given by the following matrices A and B.									
			N.C.	A = [Septem Basmati 10,000 50,000	nber Sales (in Permal 20,000 30,000 er Sales (in R	Rupees) Naura 30,000 10,000 G	amkishan surcharan Sinj	gh
	和君子	PARE	123		Basmati 5000	Permal 10,000	Naura 6000 Ra	mkishan	
14	·北和			B =	20,000	10,000	100 A 100	inkisnan ircharan Sing	h
ii. Fir	id the combir	ned sales in	1-1 5 - 111 - 111	d. 135000 r and Octol d. 81000		armer Ran	nkishan in	each variet	y.
far a.		n? Peermal	c. Naura	d. All of the	ese have	e the same	price		a 2010
far a. iv. If b	mer Ramkisa Basmati b. ooth farmers	n? Peermal receive 2%	c. Naura profit on g	d. All of the	ese have	e the same	price		for
far a. iv. If b	mer Ramkisa Basmati b.	n? Peermal receive 2%	c. Naura profit on g	d. All of the	ese have	e the same	price	armer and	for Ram Gur
far a. iv. If b eac	mer Ramkisa Basmati b. ooth farmers ch variety solo Basmati 100	n? Peermal receive 2% d in October Permal 200	c. Naura profit on g r. Naura 220	d. All of the ross sales, Ram	ese have comput b.	e the same e the profi Basmati 100	price t for each fa Permal 200	armer and Naura 120	Ram